广告

NILabVIEW解密,兰州物理研究所利用LabVIEW开发

NILabVIEW解密,兰州物理研究所利用LabVIEW开发
收藏 分享
举报
价格 面议
起批量 ≥ 1件
供应商 北京瀚文网星科技有限责任公司
所在地 北京市昌平区
王经理

򈊡򈊣򈊦򈊩򈊡򈊢򈊠򈊣򈊧򈊦򈊡 򈊠򈊡򈊠-򈊨򈊡򈊧򈊤򈊧򈊧򈊡򈊨

微信在线

“NILabVIEW解密,兰州物理研究所利用LabVIEW开发”详细信息
基本参数
联系人
王经理
手机
13691203761
面向地区
产品名称
LabVIEW开发,LabVIEW项目,LabVIEW编程,LabVIEW解密
关键词
西安中航飞机研究院,LabVIEW开发

NILabVIEW解密,兰州物理研究所利用LabVIEW开发

我们使用 NI LabVIEW 与 NI TestStand 开发灵活的软件架构,以解决目前及未来的测试需求。这套软件的功能众多,能够测试不同版本的产品,以及开放式与封闭式硬件。使用 NI TestStand,我们可以利用商业可用的测试执行功能来节省开发时间。
使用定制化的操作界面,操作员可以登陆、载入选出的测试序列,然后监控测试过程。界面也会提供即时资料更新给操作员、生成测试报告,然后将所有的测试资讯记录到资料库中,供日后分析之用。我们在 LabVIEW 中撰写个别的测试,这也可以节省开发时间,因为我们拥有庞大的函数库可以测量、与硬件连接、分析结果,以及显示。通过模块化操作界面进行序列控制,并将其与个别测试模块分开,我们便能将开发的成果使用于更多有类似测试需求的产品上。以统一的格式记录所有的数据,我们的研发与生产工程师就能进行分析并找出趋势,并制作生产收益的报告。他们也会使用数据分析失败原因,并在设备制造的过程中找出待改进之处。记录中拥有所有的测试资料,包含使用的序列、参数、测试仪器的校正日期、测试时间,以及产品的通过 / 失败状态。

监控系统包括了车载设备(on-board equipment)、1 个无线(off-board) 伺服器、电脑与无线网路设备。机器铲的车载设备包括:
 加上NI cRIO-9014 - 8 槽式机箱的CompactRIO 系统
 供振动量测用的NI 9233 模组
 供动态应变量测用的NI 9237 模组
 提供、高解析度转速测定资料的NI 9422 模组
 提供机器铲控制系统补偿讯号的NI 9205 模组
 装在机器铲主要旋转元件(马达与齿轮箱传动装置) 上的压电加速度计
 装在机器铲主要结构元件上的应变计
 主马达上的增量编码器
 无线网路设备
 电力滤波设备
车载的CompactRIO系统需要加速度计、编码器与应变计同时提供信号。振动与应变信号持续受到监控,并与设定的警报值做比较,在问题产生时可以抢先通报。如果发生警报时,信号会以使用者定义的间隔定期储存。发生这种状况时,CompactRIO平台的监控应用可以寻找佳的分析量测时段,并佳化信号杂讯比。运用本法,资料会定期以预设的间隔储存,以控制终的机械改变,而发生突发事件时资料也会记录下来。碰到以上2种状况时,机器铲控制系统的补偿信号会储存起来供参考之用,并提高主动校正的可能性。

撷取的资料暂时储存在CompactRIO 的内部快闪硬碟中,然后透过无线连结自动下载到主要伺服器中,资料在主要伺服器中处理、与更多复杂的警报参数比较,然后储存在资料库中。如果无法无线连结到伺服器时,使用者可以透过短程、点对点的无线连结(使用者靠近机器铲以建立连结) 连上并手动下载资料;接上乙太网路连接线,或是在CompactRIO的USB 插槽上插入随身碟,资料便会自动上传。<0}
资料一旦处理储存好了,就可以供下列之用:使用者视觉化、分析、手动处理,以及在伺服器上进行趋势管理,或是有网路可存取资料库的电脑,也可进行趋势管理。所有的组态、资料移转、处理、视觉化与分析软体都充分内建在LabVIEW 里。

使用labview、CompactRIO开发嵌入式涡轮增压器性能检测系统
概述:与之前的解决方案相比,使用NI CompactRIO开发嵌入式涡轮增压器检测系统,提供更高的精度、准确性和稳定性。

我们用基于CompactRIO的嵌入式系统替换了现有的可编程逻辑控制器(PLC)检测系统,从而提高了控制的精度级别。与之前的PLC解决方案相比,新系统具有多个优势,包括的阀门控制和更的温度、压力和转速测量。由于CompactRIO具有更高的性能和稳定性,新系统能够快速地完成例如涡轮增压器预备性能检测和信息分析等功能,从而可以确保产品的稳定性。
在开发时间和资源分配方面,需要一个人进行硬件设计两个月,一个人进行软件开发三个月以及一个人进行调试和检测一个月。
基于CompactRIO的全新检测系统可以测量用于船只引擎驱动的涡轮增压器的性能,。天然气、空气和汽油的输入量需要根据安装的阀门进行调节。根据调节后的量,涡轮增压器、涡轮映射和压缩机映射的效率使用关于涡轮增压器的压力、温度和速度值进行测量。

CompactRIO模块
涡轮增压器性能中重要的变量包含温度、压力和转速。系统组件包含多个NI C系列模块,包括NI 9217 RTD模拟输入模块测量电阻温度传感器(RTD)温度、NI 9211热电偶输入模块测量热电偶温度、NI 9203数据采集模块测量压力和电流、NI 9423漏极数字输入模块测量转速。此外,还采用了NI 9265同步更新模拟输出模块作为系统和模拟输出值的外部接口,NI 9425漏极数字输入模块和NI 9476源数字输出模块用于数字I/O值。检测系统由系统操作员通过用户界面进行控制。监视外部系统使得用户可以控制和管理整个系统。
结论
涡轮增压器是车辆引擎的重要部分,其性能直接影响整个引擎的性能。对涡轮增压器性能进行适当的测试是确保终产品质量的关键步骤。以前的PLC系统无法提供所需的精度。使用基于CompactRIO的全新检测系统替换PLC系统节省了空间,并且提供了更高的精度、更高的分辨率和更好的性能。此外,由于系统开发员熟悉CompactRIO的开发方法,可以在短时间内让系统开始运行,这样节省了时间和开发资源。
使用LabVIEW FPGA和CompactRIO开发伺服控制系统
概述:利用NI LabVIEW FPGA 模块和CompactRIO 系统开发出世界上台在连续旋转式磁盘上进行三维全息数字数据存储的伺服控制系统。

全息数字数据存储(Holographic digital data storage,简称HDDS)技术是光学存储领域里有前景的新兴技术之一。传统的数据存储技术,是把单的比特信息存储为介质表面的磁或光变量,正在接近其物理的极限。然而,全息存储技术可以使数据的传输速率加速到10 亿比特每秒,把访问时间降低到几十微秒,同时将数据的存储密度增加到理论的大值,即1 万亿比特每立方厘米。  
通过在存储介质的整个三维空间上编码数据,并且利用称为页的大容量并行存储块来进行记录和恢复,全息数据存储技术突破了传统二维技术(如DVD)的限制。

利用CompactRIO 对Daewoo HDDS 系统进行原型验证
我们的H D D S 原型包括两个主要的子系统:一个基于N ICompactRIO三百万门的FPGA 系列模块的电光运动控制系统和一个基于Xilinx 公司八百万门的FPGA 电路板的视频解码系统。CompactRIO 系统控制着一个线性电机、一个步进电机、一个电流镜和一个CMOS 相机。每一个运动控制环都要求的控制,所以我们利用反馈信号来控制和检测数据。不同于传统的计算型电路板,CompactRIO 系统使我们可以利用NI 公司的LabVIEWFPGA模块来定制脉冲发生器的时序,其精度可达到一个FPGA时钟周期。为了避免滑动,我们通过创建定制的用于加速和减速的数学函数,开发了复杂的电机控制算法。我们为三种类型的电机分别设计了驱动电路,并把它们连接到CompactRIO 的输入/ 输出模块上。除了运动控制,CompactRIO 还与用于视频解码的FPGA 电路板通信,该电路板是使用我们自有的用于视频恢复和CMOS相机控制的信号处理技术开发的。前端MPEG解码器积累在缓存中的数据量随速度变化很大,CompactRIO 还通过检查其变化来控制数据的传输速率。
使用LabVIEW 与DAQ 监控人体于动态平台上的摆动
概述:使用NI LabVIEW软体搭配NI资料撷取(DAQ)硬体建构平台,其表面具备122组应力感测电阻器(FSR)并能以200 Hz进行取样,以量测人体摆动与平衡的控制情形。

人体即使在直立时,亦需随时保持着稳定性。人体整合多种机制,才能避免身体在静、动态的条件下跌倒。测力板(Force platform) 与Stabilogram 均为量测、量化人体平衡度的标准。另根据时间概念而搜集压力中心(COP),以呈现姿势控制的结果。基本上是以表面支撑人体中心,再垂直投射相关应力。主机电脑将根据FSR 的讯号而执行一系列的计算作业,以取得COP (如图1)。

图1. 负责计算人体足部摆动的程式图区块
大多数的姿势与平衡计量技术,均是主动操作姿势或平衡状态,再计算出人体的反应。在此系统中,我们是让人体于不稳定的支撑表面上保持平衡,达到自我反应的效果。若让人体站在可移动的支撑表面上,亦可达到相同的变数。针对任何测试点,我们的平台可达到不同方向的平衡紊乱(如图2)。
在衔接仪器之后,此平台可随时追踪人体COP 的移动,再显示各种状态下的人体稳定程度。此时如BOSU Balance Trainer 的动态表面就极其重要,可完整补偿姿势控制器统,而模拟动态条件。与仅能模拟静态条件的静态平台相较,动态表面更能呈现病理学方面的问题。
仪器控制
此坚固平台的直径为635 mm,非平面的圆顶直到动态平台之处均为柔软材质(如图2)。另有薄薄一层FSR 排列为阵列,固定于平台之上。我们另于平台之上安装感测器,以捕捉不同的站立姿势,并达到更大的仪控面积(如图2)。此系统好能尽量减少各种限制。
每次进行EO 实验,COP 明显均集中在同一区域。但若进入EC 实验,受测人员的COP 分布就会产生的变化。结果显示,所有受测人员若要在不平衡的表面上达到平衡,将极度依赖自己生理上的本体感受器(Proprioceptor) 告知大脑目前状态,也解释了COP 分配区域大幅增多的原因。
一项对EC 实验的有趣观察指出,若受测人员对生活形态抱持轻微的积极态度,则摇摆的程度较大;若对生活形态抱持适当的积极态度,其摇摆程度亦较小。不同的生活形态亦反应出COP 的分配范围。与适当积极态度的受测人员相较,较不积极的人其COP 分配范围亦较大。
若受测人员已熟悉了Balance Trainer 动态平台,亦将更能控制COP 的分配范围,亦能进一步控制自己的本体感受器。在实际撷取资料之前,这些受测人员已经实际使用动态平台达7 天。
结论
总的来说,我们用LabVIEW 与DAQ 建构动态平图,可了解人体在不稳定表面上的平衡状态。仪控式的动态平台显示了下列特性:
• 测得受测人员的姿势控制与摆动情形若受测人员的COP分配范围较大,也耗上更多力气才能达到平衡
• 受测人员若对生活抱持积极的态度,也展现了较佳的姿势控制能力
• 在切断视觉之后,人体会立刻切换为本体感受器,通知身体是否在特定方向的摆动幅度过大
• 受测人员在熟悉了平台之后,亦将缩小其COP分配范围综合以上结论,受测人员只要能控制自己的本体感受器,就越能在非平衡的表面上让自己保持平衡。
使用LabVIEW和PXI定位飞行过程中飞机的噪声源
概述:基于NI LabVIEW软件搭建一个应用程序,并使用NI PXI硬件从布置在跑道上的相位麦克风阵列采集数据。

研究客机上的噪声源
为了能开发出更为安静的客机,我们定位所有的噪声源,以加强我们对噪音生成原理的认识。在开发一架飞机时,我们可以通过数值分析和模型测试预测噪音等级。然而,实际飞机噪音的属性和特性只能在实际飞行测试中才能获得。利用声音波束成形技术来定位噪音源是一种有效可行的方法。波束成形是一种使用定位噪声源的方法,同时能获得噪声源的振幅。虽然我们在JAXA项目上小型模型飞机的风洞测试和飞行测试中已经发展并改进了这项技术,但还未曾将这项技术应用于实际飞行的飞机中。2009年,我们拥有了一架小型Mitsubishi MU-300 Diamond商务机。2010年,我们开始在跑道上设置了相位麦克风阵列,通过噪声源定位测量来验证我们现有的技术,并找到可以提高的空间。
相位麦克风阵列的测量
相位阵列包含了许多麦克风,分布在一个大直径的范围上。利用噪声源的声波到达每个麦克风时间的微小差别,我们可以估算出每个噪声源的位置和强度。在这个测试中,我们设计了相位阵列来辨识飞行于120米高度的飞机上两个相距4米的1kHz音频信号。这个相控阵列包含了99个麦克风,分布在一个直径30米的圆形区域上。
飞行中的噪声源定位测试包括飞机发动机状态; 声觉测量,以及飞机飞过相位阵列时的位置、高度和速度。因为飞机产生的噪音在传输到地面麦克风的过程中会被大气削弱,因此我们还需要记录气象数据,例如风向、速度、温度和湿度。

联系我时,请说是在黄页88网西安应用软件栏目上看到的,谢谢!

留言板

  • LabVIEW开发LabVIEW项目LabVIEW编程LabVIEW解密西安中航飞机研究院
  • 价格商品详情商品参数其它
  • 提交留言即代表同意更多商家联系我

北京瀚文网星科技有限责任公司

地址:北京市昌平区

最新应用软件信息

“NILabVIEW解密,兰州物理研究所利用LabVIEW开发”信息由发布人自行提供,其真实性、合法性由发布人负责。交易汇款需谨慎,请注意调查核实。